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AMtraet--In a two-phase mixture of solid particles in an inviscid compressible fluid the effective density of 
the mixture differs from the average density due to relative accelerations between the phases. The effective 
density directly influences the effective speed of sound. A constructive theory is given to compute density 
tensors which describe the inertial coupling between the two phases. The theory is based on Hamilton's 
principle and a general homogenization method as described in a previous paper. Here we describe a 
variant of the theory which clarifies the differences between surface and volume averaged velocities. This 
difference is important in case of two-phase configurations showing a regular periodic pattern like rod 
bundles in fluid. Quantitative results are given for rod bundles and partly for spheres in regular square 
arrangements. 

1. INTRODUCTION 

1.1 Description o[ the problem 
In an accelerated mixture of two phases with different densities relative or slip accelerations 
appear. The acceleration slip depends upon the virtual density (see Drew et al. 1979) which 
couples the accelerations of the two phases. This slip influences the effective density and the 
effective speed of sound of the mixture. Thus the virtual density is an important parameter but 

for general two-phase mixtures it is difficult to predict. 
In a recent paper (Schumann 1981) linear homogenized equations of motion have been 

deduced for a bundle of compressible rods with periodic configuration in an acoustical inviscid 
fluid at small velocities. The theory provides a constructive method to compute effective 
density tensors and sound speeds. In the previous and the present paper only inertia and 
pressure forces are taken into account explicitly while all other forces are assumed to be 
prescribed. The theory is intended to be used to describe pressure waves in the core of a 
nuclear pressurized water reactor. For this purpose elasticity and friction forces have to be 
included and appropriate models are given by Schumann & Benner (1981). For high frequency 
motion (e.g. for toR2/v >> l, to = characteristic frequency, R = rod radius, v = kinematic vis- 

cosity of the fluid) these forces are small in comparison to the inertia forces. On the other hand, 
the characteristic frequency of motion to is assumed to be so small that the fluid in a cell 
behaves locally incompressible, i.e. toR/a ~ 1 (a = speed of sound). This does not exclude tong 
wave density variations. The kinetic energy related to rotational degrees of freedom and to 
local compression of the structural material is assumed to be small in comparison to the kinetic 
energy related to slip motion between fluid and structure. Further the present theory is 
restricted to cases where the convective derivatives uicg/,gxi are small in comparison to the local 
derivative O/cgt and where the fluid-structural interface deformations are small in comparison to 
R. These assumptions are appropriate for small amplitude pressure wave phenomena. 

The given homogenization theory allows for arbitrary rod shapes and patterns as long as the 
pattern is periodic so that one can divide the domain into a lattice of rectangular cells each 
having the same geometrical and material properties. The side lengths of such a cell are ~,  ~2, 
~3 and E: = max(a i) must be small in comparison to the diameter D of the domain V. 
Neglecting the boundary 0V of the domain V, one can define the cells in a somewhat arbitrary 
manner. For example, figure 1 shows different types of cells for a bundle of cylindrical rods in 
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0 00c:  
0 0 0 0  

Fig. 1. Three arbitrary choices of selecting a cell in a periodic pattern. 

square pattern. The theory was formulated in terms of surface averaged fluid velocities. This 
has advantages in that the averaged equation of continuity and boundary conditions at ?V are 
relatively easy to deduce. The disadvantage, however, is that the resultant homogenized 
equations are dependent on the cell definition actually chosen. 

In this paper, the theory is reformulated in terms of volume averaged fluid velocities. The 
homogenized equations of motion in terms of volume averaged velocities are independent of 
the cell definition. The four density tensors introduced in Schumann (1981) are related to one 
symmetric virtual density tensor. After a coordinate transformation, which diagonalizes the 
virtual density tensor, the effective speed of sound can be computed explicitly. 

The present theory is valid also for structural material which has the form of a porous body 
or of a cloud of particles floating in a fluid as long as the configuration is periodic. Moreover, 
the theory is of relevance for general two-phase problems in that it gives the relation between 
the virtual density and the volume fraction a (also called porosity) of the fluid. But this 
relevance is qualitative only because the assumed periodicity and small interface deformations 
are restrictive assumptions in this connection. Nevertheless, the results support and extend the 
present state of knowledge in this field as will be explained in Section 6. 

1.2 Summary of the homogenization method 
The general homogenization approach follows the proposals of Bensoussan, Lions & 

Papanicolaou (1978) and Berdichevskii (1977) as follows. The starting point is Hamilton's 
principle in a form suitable for a heterogeneous mixture. As shown in Schumann (1981) the 
solutions of the local equations of motion extremize a suitable functional. Then, approximative 
local solutions are specified in terms of a sum of local trial functions times global amplitudes. 
The latter are defined such that in the limit E/D-oO they represent the (volume or surface) 
averaged fluid and structural motions. The local trial functions are determined such that they 
extremize the functional for fixed global amplitudes. Under the assumption of smooth or 
long-wave global fields it turns out that the local trial functions are solutions of Laplace 
equations in a single cell with periodic boundary conditions at the cell faces. The solution of 
Laplace equation is, in principle, a standard numerical task. Thereafter, homogenized equations 
of motion follow in terms of the global amplitudes from the variational principle for fixed local 
trial functions and for the limit E/D ~0. An important restriction is that the global amplitudes 
have to satisfy the averaged continuity equation. This restriction is taken into account by 
introducing a Lagrangian multiplier which can be identified as the averaged pressure. 

The procedure has been described by Schumann (1981). We do not repeat all the details but 
state only those changes which are necessary to convert from surface to volume averages. In 
this paper, equation numbers start at 101. Equation numbers below 100 refer directly to 
equations in the preceding publication. 
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2. S U R F A C E  A N D  V O L U M E  A V E R A G E D  V E L O C I T I E S  

First, some essential definitions are repeated from Schumann (1981). The domain V is 
composed of rectangular cells V,, see Figure 2. The cells are numbered with the integer vector 
m. Each cell contains a section S.  of a rod, such that the cells form a periodic lattice, and a 
section F. of the fluid. 

The notation is such that if y is any quantity then y~ are vector components where repeated 
lower indices imply summation from one to three. On the other side, y~ is an indexed quantity 
not implying summation, y'(x, t) is a local field quantity as a function of space and time, y'(x, t) 
is a local ansatz function which approximates y'(x, t), ](m, t) is an averaged quantity within 
cell m and y(x, t), will denote corresponding homogenized fields. A star is used as upper index 
for volume averaged quantities and p -= Oy/Ot. 

The ansatz for the local fluid velocity u; and the local structural deflection w; (i = 1, 2, 3) 
defined in [12, 13] is 

ui'(x, t) ~ u',(x, t), wi'(x, t) ~ w',(x, t), 

u~(x, t): = ~/i(x)tij(m, t) + ~i~(x)wj(m, t), x e Fro, 

w~x, t): = ffi(m, t), x • Sin. 

[101] 

[102] 

[103] 

Here, ~i and ~0 are the local trial functions within the cell with index m. They describe the 
local fluid velocity in the direction of xi due to average fluid or rod velocities in the direction of 
x~ within any cell. As a consequence of the variational principle they satisfy 

~oii = #~]c~xi, O2~j/gxi 2 = 0, [104] 

~b~ = O~/c~xi, ~2x~[c~x ? --- 0, [105] 

which is consistent with the assumption of locally incompressible and inviscid flow. 
The solutions are normalized by 

i~i] ~- ~ij, i ~ j  = O. [106]  
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Fig. 2. Domain notations. 
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Here 

iY: = f L , :  y dO/laFdl [107] 

is the surface mean value of any quantity y in the fluid, averaged over the fluid part of the cell 
with unit outward normal in the direction of the coordinate x~. Due to this normalization 

i - I  
ui = ui, [ 108] 

so that ti~ represents the surface mean velocity while I~ i is the volume mean displacement which 
equals the corresponding surface mean displacement. At the fluid-structure interface 8I, with 
unit normal ni" the normal velocity must be continuous. As a consequence of [102, 103] the trial 
functions have to satisfy 

ni'¢ij = 0, ni'$q = nj" [109] 

at 0Ira. Further, ~q and $~i have to be periodic functions of x~ with periods e i, i =  1, 2, 3. This 
condition is necessary to insure that u/ becomes a continuous space function in the fluid 
domain for E/D~O. These statements have been explained in Schumann (1981). 

Now, consider any plane ~F" within a cell and parallel to 8F g as sketched in figure 3. The 
magnitude 18F'~I differs in general from 18F~I. As ~ij describes a solenoidal flow field for fixed 
rods, the flow described by ,q across 8F" and 8F ~ must be equal. Therefore, 

[1 lO] 

for all planes 8F~ ~ but in general 

f fgFii ~ii dO/Ic~F'il # f f~f®~ q~ij dO/IcgF~( 

Thus the normalization (not the form) of ~q and consequently of t~i changes if we use a shifted 
cell definition. This means that these quantities are dependent on the cell definition. 

It is easy to show that 

~bq = 6i~ - Cq, [ 111] 

because the r.h.s, satisfies all conditions [105, 106, 109] on ¢q. Thus ~0 is cell-dependent too. But, 
while ¢ii is cell-dependent only with respect to its magnitude, ~kq is ceil-dependent also in its form. 
The reason for this cell-dependence can be understood from figure 4. The surface mean flow related 
with ~b; i across the faces OF ~ is zero while the rod moves. However, the volume mean values of ~ij 
within the cell is generally non-zero because of the fluid displaced by the rod. 

aF ,i aF i 

Fig. 3. Definition of a surface OF 'i in the fluid which is parallel to the surface ~F ~. 
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Cell A 

~ij ~ ij 
r 

Cell B 

~ x j  

Fig. 4. Sketches of the flow fields ~o o and 0o for different cell types. The shaded domains have equal form. 
One can see, that the flow pattern of ¢o, but not that of 6o, is equal for both cell types. 

Actually, the volume mean fluid velocity is 

Because of [110] 

F. 

F. 

[112] 

so that 

fff ,jdV=£,ff ,jdOdx, 
F m ,~F '~ 

= ei  ,~oolaFmil  = ,'1 aF,.'l,~o, 

f H d VIIF.I = , ' l aF . ' l a , / ( , , ' l av . ' l )  
1:. 

= ~ijyi/a. [113] 

Here a : =  rFml/I Vml is the fluid volume fraction and yi: = laFmil/laVm~ I is the permeability. Thus 

~* = [yi~ i + (eL - y l ) w i ] / a .  [114] 

This shows that volume and surface average velocities are equal if and only if a = yi, i = 1,2, 3. 

This is the case if the cell type is defined accordingly or if we have a random phase distribution. 

For notation consistency,  we set 

~* ~- ~i [115] 

and replace tii and ff~ by the new variables li*, if* using [114, 115]. We then have the alternative 

ansatz 

u i -  ~oi~u j + t~i~ w i [116] 
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~/~: = (a/yi)q~o [117] 

~b*: -- tS,i - 9*.  [118] 

In the limit dD~O the discrete fields ti*(m, t), ff*(m, t) are replaced by smooth functions 
u*(x, t), w'~(x, t). 

3. A V E R A G E D  C O N T I N U I T Y  E Q U A T I O N  

The averaged continuity equations express the averaged rate of change of density p and ps 
in the cell due to the inflowing material. This flow is intrinsically related to surface averages. It 
was for this reason that surface averages have been used in Schumann (1981). The result was 

0 ~ 0 i 
o5 (,~o) : po ~ (r ui) 

[(1- ,~)p,] = -  p o ~  [ ( I -  ~/)~,.*]. 
(7t O2i 

[119] 

[120] 

Here, po and ps ° are the nomial microscopic densities of the fluid and structure material, 
respectivety. 

If [114] is used to replace ui one obtains from [119] 

0 0 , 
[121] 

From [120, 121] one can eliminate OalOt and obtains 

a Op+l-aOp,+ 0 
po0t p ° at ~ [ a u * + ( 1 - a ) w * ] = 0 .  [122] 

We note thfft the continuity eqns [120, 121] for the two individual phases still depend on the 
surface permeabilities and are, therefore, cell-dependent. One has, therefore, to be very careful 
in the definition of this ceil. This problem has been also discussed by Reed & Stewart (1980). 
The common form (Ishii 1975) of two-phase continuity equations 

a-; (ap) + (aou*) = 0 

[(I- a)p,] + ~ [(1- a)p,~,*] =0 

[121a] 

[120a] 

is obtained if we replace the local derivative O/Ot by the substantial derivative and if we restrict 
ourselves to cases with a = y', i = 1, 2, 3. 

4. HOMOGENIZED EQUATIONS IN TERMS OF VOLUME AVERAGED VELOCITIES 

One could deduce the homogenized equations of motion in terms of the volume averaged 
velocities by introducing [114, 115] in the analogous equations [41] for surface averaged 
velocities. However, the result would include asymmetric tensors unless the suitable linear 
combination of the single equation components is taken. It is easier, therefore, to start again 
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from Hamilton's principle, introducing the new ansatz f116]. With ~)* --- u* the variation of the 

functional after partial integration in time gives 

F. 

x[¢~a~7*+ * - *  

X3,m 
[123] 

Here, Ax3,. is the interval taken by cell m on the axis x3, M;'j. is a diagonal tensor of rod inertia 
per unit x3-coordinate length, g;" is the local force per unit fluid mass, and f{ is the local force 

on the structure per unit x3-coordinate length. 
As ¢*, ~* are known functions, we introduce abbreviations which have the meaning of 

effective densities and forces per unit volume: 

p ~tt : = V-~m] , PoC kiC ki d V 

Zm 

' f f f  * *  
p , t , - _  p,~f: = IVml P°~°ki@k;dV 

F. 

, .... ' f f f  p,; . - ~ po~,*,¢,~ d v 

Fm 

[124a] 

[124b] 

[124c] 

'L 
mij: = ~ X3,m M ~  dx3 ~ (1 - a)p°6 o ,  [124d] 

= lira 1 : .;o .o l V.l f f f oog;¢,, d V 
Vm 

r:=,im, J- [fffoog:dv+f  3. ,;D-.0 I V . I  x3,,. 
F. 

[125a] 

[125b] 

Because of q~* = a;j - ¢* the density tensors are related to one virtual density tensor 

by 

' f f f  oN: =rg-~ o0~(~-  akj)dV 
v,. 

[126] 

0 *u = apo6ii + Pi v [127a] 

- - P o  [127b] 

p,..ss v ,j = Pij. [127c] 

It is easy to see from [124a] that p~U is a symmetric tensor. From [127] follows that all other 
tensors are symmetric as well. 

The homogenized equations of motion are obtained as in Schumann (1981) from the demand 
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a[a(6f*,) + (1 - a)(6w*)] /axl  : O, 

which is a consequence of [122] for fixed density, is taken into account by the averaged 
pressure p as Lagrangian multiplier. The result is 

aPof t*  + Pii (U i -- W~) = g *  -- aOp/cgXi, 

(1 -  a)ps°"*wi +pi~(wjV " * -  t i * ) = -  g* + f * -  (1-a)cgp/Oxi 

[12%] 

[129b] 

The boundary conditions prescribe p = P0 on one part c~Vp C c~V of the outer boundary ,gV and 
an~u* +(1 - a)n~rb* = u,  b on the rest c~V-c~Vp, where 

u,b: = au*  + (1 - a)w* [130a] 

= y"u, + (1 - y")w,. [130b] 

The index n refers to the normal direction on ,~V and u,, ~/', are surface averaged velocities as 
defined in [40] whereas u*, w* are volume averaged normal velocities in the cells adjacent to 
the outer boundary ,9 V. 

As ~* and ~* are independent of the cell type, all terms in [129] are also independent of the 
cell type chosen. In the sum of eqns [129a] and [129b] the relative acceleration drops out. This 
is consistent with Newton's third principle of equality of action and reaction. In fact, the form 
of [129] is quite conventional (Drew et al. 1979). This was not the case in the previous 
publication (Schumann 1981). The essential points are the manner how this equation was 
deduced, the fact that the virtual density can be evaluated numerically, and that it is cell type 
independent. 

5. SOLUTIONS AND SOUND SPEEDS 

Equations [129] can be solved explicitly for the accelerations ti* and w~.* For brevity we 
assume that the virtual density tensor is a diagonal tensor. This condition can be achieved by a 
coordinate transformation. Thus, we can set 

pi v = po~i3ij, [131] 

where t7 is a non-dimensional virtual density. Further, let K:---ps°/po. Then the solutions are 

with 

fl~ : { -- [fii + Ol(1 -- O[ )K ](gp/ (~X i 

+ (1 -- a ) K g *  + t ~ 7 ~ } / d e t  

i f*  = { - [ a ( l  - a )  + ~i]Op/Oxi 

- a g *  + (a  + , 6 i ) f * } / d e t  

det: = po[(a + tT)(l - a )K  + a~i] .  

For zero external forces (g* = f* =- 0) one can deduce the acceleration ratio 

I ~  a ( 1 - a ' ) + f i  i _ f  I for tSi~ oc 
u--~--K-~-l----a-)~p ~ [ 1/K for /7->0'  

[132a] 

[132b1 

[132c] 

[133] 
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and the effective density P~n which is defined by 

pi,  (ali* + (1 - a)fb*) = apou* + (1 - a)p°ib * , [134] 

with the result 

Pen - a(1 - a)[ar  + (1 - a)] + t~ i Po [135] 

a p o + ( 1 - a ) p s  ° for /~i .>~ [136a] 

= [ - a  . ( 1  - t ~ ) ]  -1  for #i--,0 " 
L ~ o ~ - - - - ~  j [136b] 

The limiting values correspond to layered two-phase mixtures, where the layers are in series 
( ~ )  or in parallel (t~i~0), see figure 5. As illustrated in this figure, the case t~-*oo means 
that no relative motion between the two phases is possible within the cell. Because of the 
compressibility of the mixture this does not exclude relative motions on large scales as 
discussed, e.g. by Sun et al. (1968) and Hegemier & Nayfeh (1973). 

The results [132] can be used to derive the pressure wave equation from the time derivative 
of the continuity equation [122] and the averaged equations of state [32]: 

[4 - ~ ( Aoap/ Oxj) = OrJ ax~ , [137a] 

ri = -{a(1 - a) ( r  - 1)g* + [t3 ~ + a(1 - a)]f*} [137b] 

t LPoa Ps as JJ 

Here, a and as are the speed of sound due to compression in the fluid and structure, 
respectively, and 

Air =- (a~,)28o [137c] 

is a tensor containing the squared sound speeds which have the values 

i _ {  ~ [ a 1 - a 1 / - ' ' 2  
a e . -  Pen po--~a +p--~aZJj~ • [138] 

Limiting values of this expression are 

- O/ 1 ~ "1 '~ -112 {[apo +(1- a)ps°]/o---~ + ~ / /  [139a] 
kPs Ps s J 

for #i__> oo, 

a i f f  = 

a '  1 - -  Ot ' ] l /2  [ " a 1 - - a ' ]  -1 /2  
~ + - - ~ - j  [po-.~a + p - -~  j [139b] 

for j6 i---> O, 

MF Vol. 7, No. 6--E 
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[a2lT/(tl, jr fii)]l/2 [140a] 

for K-~,  

{ras2[a(i - a) + ~i]/[a(1 - Ol)]} 1/2 [140b] 

for K-~0. 

The limit K ~  corresponds to very heavy or even fixed rods, the limit K ~0  is that of gas 

bubbles (of fixed form) in a fluid. 
For a bundle of circular cylindrical rods in a square pattern with axis in x3 direction we can 

reformulate the result of Schumann (1981), see appendix, as 

with 

p~=diag(fil,fil,O) [141] 

fiJ = k(a)" a ( l  - a )  [142] 

k(a)-~ 1 for (1 - a),¢ 1. 

The values of t~(a) and k(a) are plotted in figure 6. For a = 1 - 7r/4 the virtual density in the 
direction normal to the rod axes becomes infinite because then the rods touch each other and 

close the flow path. 

6. C O M P A R I S O N  W I T H  T H E  L I T E R A T U R E  

The effect of virtual masses in rod bundles has been treated in the past, e.g. by Chen (1978), 
by setting up the virtual fluid mass matrix which couples the acceleration of a rod with those of 
neighbouring rods. This matrix becomes very large for extensive rod bundles and cannot be 

loQ 

/~./~// a ~P 

, - o  

U/l / I l l / l / l ,  

Fig. 5. Extreme cases with infinite and zero virtual density t~. 
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Fig. 6. Virtual density t~ = k(a) a(1 - a) for a cylinder in a square pattern as a function of the fluid volume 
fraction a and the correction factor k(a). 
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computed explicitely, therefore, for large bundles. The concept of virtual densities as intro- 
duced by Schumann (1981) has not been discussed for rod bundles, so far. However, related 
approaches have been used for porous bodies and for spherical particles floating homo- 
geneously distributed in a fluid. It is interesting to relate our theory to such investigations. 

A general homogenization theory for porous bodies has been deduced by Biot (1956, 1962). 
His approach is similar to the present one in that he too starts from Hamilton's principle. He 
identifies the densities and in particular the virtual density which describes the inertia coupling 
between the phases. However, because of the assumed statistical homogeneity of the porous 
body he does not have to distinguish between surface and volume average. Also, the theoretical 
expressions cannot be evaluated numerically because of the unspecified body geometry. 
Further, the present approach has many elements in common with the micro-structure theories 
of Mindlin (1964), Sun et al. (1968), and Drumheller & Bedford (1980) and others, in particular 
in the sense that these theories, too, use Hamilton's principle. Some of these theories are far 
more refined than the present one in that not only translational relative motions are considered 
but also other modes of motion including such with large convective accelerations. On the other 
hand they are either limited to one-dimensional laminated composites or have not been 
evaluated quantitatively. Recently, Fleury (1980) derived a set of homogenized equations 
following the mathematics of Bensoussan et al. (1977, 1978). His result is formulated in terms of 
a single average velocity vector and an inverse density tensor. He does not give explicit 
expressions for specific geometries and one cannot directly compare his result with Biot's and 
the present ones. Some empirical relations for the virtual density in porous bodies are discussed 
by Barzam (1980). 

For spherical particles in fluid several authors, e.g. Batchelor (1969), Crespo (1969), Drew et 

al. (1979), use the simple formula 

1 
t~i=~ff, f f : = l - a ,  i=1 ,2 ,3  [143] 

which is exact for potential flow and void fractions ff ~ 1. Morris & Stewart (1976) discuss the 
differences between spherical gas bubbles and solid particles. They state that for high frequen- 
cies (Strouhal numbers) both have the same virtual mass. 

For large values of void fractions if, only approximate results are known. Obviously it is not 
simple to solve Laplace's equation for a system of spheres. Zuber (1964) and Oshima (1979) 
computed the virtual density by using the analytical potential flow solution for a single sphere 
accelerated within a concentric outer sphere. The result of Zuber has also been deduced by 
Wijngaarden (1976), 

1 
iS' = ~ ~(1 + 2~)/(1 - if), i = 1,2, 3 [144] 

and is used, e.g. by Mecredy & Hamilton (1972) and Ardron & Duffey (1978). Oshima's result is 

1 
t~ i=~o7(1-~) ,  i=1 ,2 ,3 .  [1451 

The present author cannot explain the reasons for the differences. Oshima's result is attractive 
because it is very similar to the result [142] for cylinders. For a random suspension of spherical 
particles Wijngaarden (1976) has found numerically the approximate relation 

1 
/~i = 2 ~(1 + 2.78ff) + 0(if2). [146] 
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Srebnyuk & Gorban (1979) have computed the virtual mass for an individual accelerated sphere 
within a finite set of neighbouring spheres lying on a line or in a plane. Because of the restricted 
number of spheres and the non-smooth motion type these results cannot be related to the 
present theory. 

Thus, in summary, the exact dependence of the virtual density in a suspension of spherical 
particles for large void ratios 6 is still unknown. Of particular interest would be the limiting 
value for a system of closely packed spheres which, for a square arrangement, appears if 
6 = rr/6. In contrast to the cylindrical case, the virtual density is still finite for this limiting 
state. 

The experiment of Carlucci (1975) can be taken to support the result that the effective den- 
sity is reduced in a two-phase mixture if relative acceleration is possible between the phases. 
Carlucci measured the effective hydrodynamic mass mn of a rod oscillating normal to its axis. 
The rod is located concentrically inside of a rigid flow tube. The annular region between the 
inner and outer cylinder wall is filled by a flowing air-water two-phase mixture. For a single 
phase fluid the value of the effective mass is well known and proportional to the fluid density. 
For a homogeneous two-phase mixture without slip the effective mass should decrease linearly 
with the void fraction 6. However, Carlucci's results, see figure 7, show that the effective mass 
is smaller than expected. Carlucci suggests that the deviation is due to the non-uniform density 
distribution across the annulus or due to compressibility effects. An alternative explanation is 
as follows. Because of the relative acceleration between the phases the effective density is Pee as 
given by [135] which for finite virtual density is less than the volumetrically averaged mixture 
density. This can be seen from figure 7, where the effective mass has been plotted as computed 
from [135] and the approximate virtual density formulas [145, 144], i.e. 

po 

from [145], [147a] 
26+1'  

(1 - 6)(1 + 2 6 )  
1 + 46 - 262 ' from [144], [147b] 

taking r = 0. Of course, the underlying assumption of small spherical air bubbles in potential 
flow is an over-simplification in particular for large void fractions. Further, at very small void 
fractions viscous forces reduce the slip between the phases so that it is clear that the theoretical 
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Fig. 7. Variation of hydrodynamic effective mass with void fraction 6 = I - a .  Experimental points of 
Car]ucci (1979) and theoretical curves corresponding {147a/b]. 
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curves underestimate the effective density in this range. Otherwise we see that [147] envelopes 
the experimental data, which supports the given explanation. 

Several authors give expressions for the effective sound speed in a two-phase mixture like 
air-water mixtures. It appears as if the close relation between the sound speed and the effective 
density and thus the virtual density as given in [138] has not been always noted. Limiting values 
like the "equilibrium" sound speed for t5 i = ~ or the "stratified" or "frozen" sound speed for 
t~ i =0, eqn [139], agree with those given by Chawla & B6ckh (1971), Mecredy & Hamilton 
(1972), and Ardron & Duffey (1978). 

B6ckh & Chawla (1974), and B6ckh (1975) report experimental results on the speed of 
sound. They find that the bulk of large amplitude pressure waves in air-water mixtures travels 
with the equilibrium sound speed [139a] while the small amplitude foot of the pressure waves 
shows a larger sound speed. This difference can be attributed to friction effects which reduce 
the slip between the phases in the bulk of the wave. 

Parker (1978) gives without derivation the formula aen = a/(2-a) ~/2. He verifies experi- 
mentally this relation for fixed solid rods (K ~ ) .  The formula is consistent with the present 
result [140a, 142] for (1 - a) ~ 1. 

The acceleration ratio [133] is consistent with the result of Batchelor (1969) and Morrison & 
Stewart (1976) who deduced a maximum ratio of three for K = 0 and large frequency motion. 
The value three is peculiar to small spherical particles. For cylinders accelerated normal to their 
axis this limiting value is two, as can be seen from [133,142]. The acceleration ratio [133] for 
~ 0  is also the maximum possible velocity ratio. It is interesting to note that for choking 
two-phase flow the condition of maximum momentum or energy transport led Fauske (1961) 
and Moody (1969) and others to the postulate that the velocity ratio should be given as 1/2 or 
1/3 power of this maximum acceleration ratio. 

In conclusion, our results are consistent with the literature. The main achievement is a 
theory which predicts effective densities, acceleration ratios and speeds of sound for the whole 
range of physically possible virtual density values for two-phase mixtures with a random or 
periodic phase distribution. 
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A P P E N D I X :  R E L A T I O N  TO H O M O G E N I Z E D  E Q U A T I O N S  IN TERMS OF SURFACE A V E R A G E S  

The density tensors and forces defined in [34] of Schumann (1981) are related to the 

quantities defined in [124, 125] due to [117] with/.to: = yzyqa2 as 

p~ = ~'(piY + ,~,po), 
p ~ '  q - _ - . . 

= Pij  -- P f l P i  v + Pot~ij('Y ' -- a t z O ) ,  

Pi'~ = m o  + Iz~JpiV + Po~ii(  a - ,yi _ ,yi + t . t i ia) .  

gi = ( Y i / a ) g  *, 

f ,  = f *  - g , .  [ A l l  

We note that for a = yi all factors a, 3 /cancel  to unit factors or zero summands. 
For case of circular cylindrical rods in a square pattern the result of the previous paper [47] 

can be restated as 

V _  Pij - diag (po~ t, po~ z, 0) [A2] 

with 

~1 = ~2 m a[(2 - a ) k ~  - 1] 

~- a(1 - a)  for (1 - a ) ,~  1. [A3] 

Here k~, is the correction factor plotted in figure 5 of Schumann (1981). In fact, because all four 
tensors are related to pi y, the different correction factors shown in this figure are not 

independent but satisfy 

(2 - a ) ( k f  - 1) + 1 - a = (l - a)[2(ki~ - 1) + l] 

= (1 - a)[(2 - a)(k,s - 1) + 1], 

k f  < krs <- kss . [A4] 


